ASIAA Perspective on HSC/PFS

Goals of ASIAA/NAOJ Collaborations

- Pursue Transformational Science
- Access Advanced Technology
- Cost Saving: Sharing Budget > 109 USD
- Preserve Regional Manpower (Brain Drain)
- Focus Taiwan Efforts
- Train staff and students via Collaborations
- Lock in long term funding
- Pursue Institutional Collaborations

Taiwan Strategy for Collaborations

- 2-Track approach
 Japan: regional development
 U.S.: access US facilities
 principle: if we use, we should pay
- Preferred Contributions: "in-kind" to pump resources into Taiwan infrastructures principle: contribute instead of buy
- Open Competition for Time: no guarantee principle: best science wins; collaborate
- Project funding + University funding principle: develop job market, manpower

Summary: HSC Taiwan Status

- 03.2007: HSC proposal approved by ASIAA Advisory Panel
- 12.2007: HSC proposed in 2009, 2010 ASIAA Budget (5M USD)
- 12.2007: HSC start-up funds requested for current 2008 fiscal year
- 10.2008: AS/NINS sign HSC agreement
- 01.2009: HSC funding approved
- 12.2009: PFS mentioned in 2011, 2012 ASIAA Budget (2011 Budget Frozen at 2010 level)
- 2009-2010: Build Filter Exchanger,
 Procure CCDs, Lens Testing System

HSC Hardware Development in IAA

- Filter exchanger system
 - Collaboration with ASRD
 - Separated subsystem to HSC
- CCD procurement and test
 - Collaboration with NAOJ
- Wavefront testing instrument
 - WFC testing system
 - Collaboration with Canon and GSEO

Alignment and Shipping Structure

• 6 degree of freedom for adjustment during the alignment and integration

Filter Exchanger under testing

Shipping to Japan on Mar 8, 2011

The Filter Exchanger Works

Null Lens Fabrication

Null lens delivered in May 2010 by GESO Diameter of the largest lens is 170mm Surface error RMS within 15 nm

Wavefront Testing Instrument

Repeatability for configuration A (Average 20)=3.49nmRMS <5nmRMS Repeatability for configuration B (Average 100)=3.0nmRMS <5nmRMS

CCD Procurement and Testing

125 CCDs delivered by the end of Sep 2010 Assembly testing of focal plane in NAOJ now

Subaru HSC/PFS Science

Galaxy Cluster Abell 2218

NASA, A. Fruchter and the ERO Team (STScI, ST-ECF) • STScI-PRC00-08

HST • WFPC2

Wide Field Imaging + Spectroscopy

Weak Lensing Survey; z>6 **Cluster Dark Matter Distribution WL-induced Tangential Ellipticity DE EoS** w parameter constraints Galaxy Survey at z>7 Mergers rates at z>1 (pair, SMBH) **Evolution of Initial Mass Function Brightest Cluster Galaxies**

AMiBA 7 vs. 13 SZE Maps of A1689

AMiBA-13 (1.2m)

Subaru WL

AMiBA-7: 7.1hr on-source integration (6s)

AMiBA-13: 3.4hr on-source integration (10σ)

Higher Resolution AMiBA map better tracks Weak Lensing Image

SuMIRe (HSC+PFS) WL Measurement of

Cosmological Distance-Redshift Relationship

For a given lens, WL-induced ellipticity γ should increase with source redshift, providing a model-independent means of measuring cosmic geometry.

$$\gamma \propto \frac{D_{LS}(z_s)}{D_{OS}(z_s)} \propto \frac{r(\chi_S - \chi_L)}{r(\chi_S)}$$
$$\chi(z) = \int_{1/(1+z)}^{1} \frac{da}{a^2 H(a)}$$

First detection of this effect behind 3 clusters by Medezinski, Broadhurst, Umetsu et al. 2011 (MNRAS, in press, arXiv:1011.1955)

COSMOS photo-z distributions of BR_cz'-selected background samples

Dark Energy Constraint from the SuMIRe Deep Survey

Sensitivity for the DE equation-of-state parameter, w (Taylor+2007):

$$\frac{\Delta w}{w} = \frac{2}{\gamma_t} \left(\frac{d \ln \Gamma}{d \ln w} \right)^{-1} \frac{\sigma_e}{\sqrt{N_b}},$$

Using $\Gamma(w) \sim |w|^{-0.02}$ (Taylor+ 07) and summing over background galaxies behind 100 massive clusters with $M_{vir} = 5 \times 10^{14} M_{sun}/h$ ($\sigma_e = 0.4$, $\langle z_{gal} \rangle = 1.1$, $n_{gal} = 30$ galaxies arcmin⁻²), we have:

 $\Delta w \sim 0.6 @w = -1$ (cosmological constant)

Other geometric probes (SNIa and BAO): $\Delta w^{\sim}0.3$

Our shear-ratio statistic has a different parameter degeneracy from other probes, so that combining WL with other probes will improve the sensitivity to determine the DE EoS parameter.

High-z Galaxy Surveys

- Various high-z galaxies surveys are carried out in ASIAA:
 - deep near-IR surveys with CFHT in the GOODS-N and GOODS-S.
 - deep submillimeter surveys with SMA and soon ALMA.
- The primary goal is to find z > 7 galaxies and duty galaxies at z > 1.
- If PFS can have good red (~ 1 um) sensitivity, it can be used to follow up the high-z or dusty objects in our surveys. Our z > 7 candidates are found with ground-based near-IR imaging. Unlike candidates found by HST, they are relatively bright and spectroscopy is possible.
- Brightest Cluster Galaxies out to $z \sim 1.5$

Y-T. Lin

Galaxy Mergers

What we already know about galaxy mergers?

- Galaxy mergers rates steadily increase with redshift up to z~1
- Gas-rich mergers are more prominent at higher redshifts
- Gas-poor mergers are important to assemble massive early-type galaxies, in particular in over-dense environment.

What we don't know?

- What are the merger rates beyond z > 1?
- What is the role of mergers in various physical environments, such as in field, groups, and clusters?
- What are the connections between AGNs and mergers?
- Are brightest cluster galaxies (BCGs) formed through mergers?

What we will try to address via PFS?

- Evolution of galaxy mergers rates up to z∼7
- How much mergers contribute to the evolution of global star formation rates?
- The interplay between galaxy mergers and AGN activities
- The importance of wet/dry/mixed mergers in various environments

Approaches — Study Close Pairs

- Challenges for selecting close pairs
 - Close pairs/Mergers are rare objects (a few % at z <1) => require a large survey to detect them
 - Kinematic pairs are selected with $\Delta v < 500 \text{km/s} => \text{corresponding to}$ $\Delta z/(1+z)<0.00167$ (can never be achieved by photoz at high redshifts!!)
- Requirement for merger studies via PFS:
 - Spectral resolution (R > 2000): to resolve the line-of-light velocity difference for selection of kinematic pairs
 - High Sampling Rate (>50%): to successfully detect close pairs and calibrate true pair fraction
 - Wide coverage (> A few tens of square degrees): to sample various environments (fields, groups, clusters)
 - Wide spectral coverage (extending to NIR is preferred): to measure redshifts and to obtain star formation rate and AGN diagnostics

Census of Binary SMBH Mergers

- Liu et al (10) identified galaxies with double [OIII] lines from SDSS; subsequent NIR and spectroscopic follow up strongly suggests binary SMBH mergers
- HSC+PFS would provide a huge sample to help better understand the SMBH merger process, constrain the merger rate, and triggering of AGN

Taiwan Approach to HSC/PFS Project

Separate Construction and Science

Construction: Gain Instrumentation Experience
Add to Resources

Science: Grow through Collaborative Research
Access Large Telescopes for
Transformational Science

• Preserve and Share EA Manpower, Resources