

Concluding the census of LAEs at the reionization epoch w/Subaru+Keck

Nobunari Kashikawa (NAOJ)

CoIs: K. Shimasaku(Tokyo), Y.Matsuda(Durham), E.Egami, L.Jiang(Arizona), M. Ouchi(ICRR), M.Malkan(UCLA), T.Hattori(Subaru), K.Ota(ICRR), Y.Taniguchi(Ehime), S.Okamura(Tokyo), C.Ly(STScI), M.Iye, H.Furusawa(NAOJ), Y.Shioya(Ehime), T.Shibuya, Y.Ishizaki, J.Toshikawa(GUAS)

reionization

- The reionized process of IGM after the "dark ages".
- The HII bubble expands around each object, making overlap each other to occupy the ionized region in the universe.
- When? 6<z<11? Green: H I
- What? QSO, LBG/LAE, popIII? Orange: H II
- How? inhomogeneous?

lliev+ 06

EoR proved by LAEs

EoR proved by LAEs

Significant decline of LAE-LF suggests IGM attenuation (Haiman & Spaans 99, Malhotra & Rhoads 04)

LAE - a unique reionization probe

- LAE test
 - Advantages
 - Sensitive at $x_{HI} > 10^{-3}$ (\Leftrightarrow GP test)
 - Statistical estimate (⇔GRB)
 - Disadvantages
 - Hard to distinguish w/ galaxy evolution
- Lya LF has no evolution during 3<z<6</p>
 - Confirmed by systematic wide survey (e.g., Ouchi+ 08)
 - Contrary to LBG evolution
 - Balance between mass assembly and dust evolution? (Stark+ 10)
- Important to draw the UV LF simultaneously
 - The rest UV (1255A) photons are not attenuated by neutral IGM

Search for LAEs at z=5.7 and 6.5 w/SCam

- Optical Deep imaging w/S-Cam
- $z=5.7 \rightarrow NB816 < 26.0 (10.0hr)$
- $z=6.5 \rightarrow NB921 < 26.0 (15.0hr)$
- photometric sample:

NB-excess & red in BB

Spectroscopic follow-ups

	z=6.5 LAE	z=5.7 LAE	W/Subaru-FOCAS and Keck- DEIMOS
photometric sample	58	89	
confirmed LAE	42	46	z=6.5 LAE
nearby emitter (OII/OIII/Hα)	1	4	z 10 - LAE ND single nearby
single emitter	2	6	iear by
ND	7	10	0
wo/ spec.	6	23	LAE
serendipitous LAE	3	8	z 10 – ND single nearby
total LAE (as of today)	45 81%	54 70%	
(as of 2006)	17	28	23 24 25 26 27 NB mag.
completenes of phot. sample	89.5%	81.8%	

Comparison of Lya LF between z=6.5 and 5.7

- Possible decline of Lya LF at z=6.5 compared w/ z=5.7
- Reionization has not completed at z=6.5
- L* difference implies $\rightarrow x_{HI} < 0.35$ (Santos 04) $\rightarrow x_{HI} = 0.20$ (Kobayashi+ 07) $\rightarrow x_{HI} < 0.50$ (Dijkstra+ 07) $\rightarrow x_{HI} < 0.32$

(McQuinn+ 07)

LF decline caused by cosmic variance?

- Ouchi+ 2010: 1deg², photo, 30% decline of L*
- Hu+ 2010: 1.16deg², spec, 44% decline of Φ*
- Nakamura+ 2010: 0.25deg², photo, 80% decline of L*
- Variance due to patchy reionization?

The rest-UV LFs of LAEs

- LyA LF difference is caused by IGM attenuation ? vs. galaxy evolution ?
- The rest UV (1255A) flux is not sensitive to neutral IGM
- The rest-UV LF of LAE at z=6.5 agrees w/
 LAEs at z=5.7
- But ,large uncertainty
- Constraint on the photon budget ?

UV L-EW relation

Photon Budget

- The first measure of the contribution of LAEs to the photon budget
- Contribution of LAE's to the photon budget among LBGs significantly increases towards faint mags
- Strongly depends on the uncertain faint-end slope of the Lya LF

NK+ apj submitted

Summary

Reionization probed by Lya emission line

- When did the reionization take place ?
 - Lya LF can be used to constrain the reionization
 - The Lya LF at z=6.5 has a deficit compared w/5.7
 - The UV-LF has almost unchanged
 - Intrinsic large CV of LAEs or patchy reionization ?
- What ionized the universe?
 - LAE's contribution to the photon budget
 - Key: Faint end of the UV (Lya) LF of LAEs
- Deep NIR NB survey for higher-z w/JWST+TMT & Wide NB survey w/HSC
- Acknowledgement: all the Subaru+Keck staffs for their helps with the observations