First Unbiased Estimates of the Metallicity and Star-Formation Activity of Lyman Alpha Emitters

Kimihiko Nakajima(U. Tokyo)

- Co-Investigators -

Masami Ouchi, Kazuhiro Shimasaku, Yoshiaki Ono(U. Tokyo),

J. Lee(Carnegie), C. Ly(STScI), D. Dale(U. Wyoming),

S. Salim(U. Indiana), R. Finn(Siena College)

subaru UM 2010 on 19/Jan/2011 @ Mitaka

1. Introduction

Lyman Alpha Emitters (LAEs)

- \Box Galaxies with strong Ly α emission, faint UV continua
 - young, low-mass, and actively star-forming
 - → promising candidates of building blocks of future massive galaxies
 - → clues to solve the mystery of galaxy formation/evolution

1216 x (1+z) A

1. Introduction

Unsolved problems about LAEs

- No reliable measurements of SFR and metallicity
 - Combinations of nebular emission -> detailed measurements
 - At z>3, spectroscopy of nebular emission(and $H\alpha$) is very difficult
 - SED fitting is frequently used, but has some problems (e.g., metallicity degenerates with age; Ono+2010a)
- ☐ A solution is ...
 - to observe lower-z LAEs
 - → Nebular emission can be obtained from the ground
 - At z<2, Ly α is not observable from the ground
 - \rightarrow LAEs at z=2-3 are good targets!

1. Introduction

Outline of our study

☐ Focus on LAEs at z=2.2

NB387 NB118 NB209

Ly α [OII] H α (+[NII])

- ☐ Derive SFR and Metallicity
 - $H\alpha \rightarrow SFR$
 - [OII] + $H\alpha \rightarrow Metallicity$

Blue : Narrowband © Ouchi, Lee

Red: Transmission of the atmosphere

Black: OH-airglow

2. Data and Selection method

Data

☐ Field: Subaru/XMM-Newton Deep Survey

(SXDS; Furusawa+2008)

■ Imaging Data

- Foucaud+

Band	Limiting mag	Area
- Instrument, PI	(5σ, aper)	(arcmin²)
NB387	~25.6 AB	~2000
- Suprime-Cam	(2.0")	
- Ouchi+		
u*	~27.0 AB	~2000
- CFHT/MegaCam	(2.0")	

BVRiz	26 - 28 AB	~2000
- Suprime-Cam	(2.0")	
- Furusawa+		
JHK	~24.6 AB	~2000
- UKIRT/WFCAM	(2.0")	
- Lawrence+		

NB118	~22.6 AB	~1300
- KPNO/NEWFIRM	(3.5")	
- Lee+		
NB209	~22.2 AB	~350
- KPNO/NEWFIRM	(3.5")	

- Lee+

2. Data and Selection method

Selection of z=2.2 LAEs

☐ Combination of NB387 with u* and B

• Emitters with EW > 40A fall into this region

→ Emitter candidates

Black: All objects (NB387)

ed: LAE candidates

- ■919 candidates are found!
- \rightarrow 105 candidates have both

NB118 and NB209

3. Stacking analysis

Stacking of 105 objects

- Stacking images of each LAEs to increase S/N ratio and detect [OII] and Hα: "Stacking Analysis"
- → typical, and unbiased properties of LAEs

3. Stacking analysis

First detections of [OII] & Hα from typical LAEs

- J-NB118 = $0.39 \pm 0.08 \rightarrow EW_{rest}$ (OII) = 98 (+22/-19) A
- K NB209 = $0.60 \pm 0.14 \rightarrow EW_{rest}$ (H α) = 207 (+206/-90) A
- \rightarrow First detections of [OII] and H α from typical LAEs !!
- NB387 and u* images are also stacked in the same manner
 - $u^* NB387 = 0.66 \pm 0.03 \rightarrow EW_{rest} (Ly\alpha) = 86 (+5/-5) A$

SFR from $L(H\alpha)$

 \square H α luminosity is a good indicator of SFR (e.g., Kennicutt+1998)

	EW (A)	Luminosity (erg/s)	SFR (M _{sun} /yr)
Ηα	207 (+206/-90)	(6.9 +/- 1.4) e+41*†	5.5 +/- 1.1*†
(Lyα	86 +/- 5	(1.8 +/- 0.04) e+42*	1.8 +/- 0.04*)

- * Dust-Uncorrected
- † [NII] is subtracted
- → typical LAEs have smaller SFRs than LBGs at high-z (consistent with past results by SED fittings; e.g., Gawiser+2006)
- M* is derived from SED fitting (Ono+ in prep.)
 - $M^* = 5 \times 10^8 M_{sun}$
 - \rightarrow much smaller than other high-z populations (M*>10⁹M_{sun})

4. Discussion

Ly α escape fraction: $f_{esc}(Ly\alpha)$

- \square A fraction of Ly α photons that can escape from a galaxy
 - $f_{esc}(Ly\alpha) = L_{obs}(Ly\alpha)/L_{int}(Ly\alpha) = L_{obs}(Ly\alpha)/(8.7xL_{int}(H\alpha)) = 35\%$
 - \rightarrow larger than those of HAEs and LBGs with Ly α
 - + HAEs : $f_{esc}(Ly\alpha) \sim 5\%$ (Hayes+2010)
 - + LBGs : $f_{esc}(Ly\alpha) \sim 5\%$ (Kornei+2010)
 - Brighter LAEs have larger f_{esc}(Lyα) (?)
 - \rightarrow galaxies with higher $f_{esc}(Ly\alpha)$ are more easily selected as LAEs

Metallicity

- \square The ratio of [OII] and H α +[NII] can be an indicator of metallicity
 - Combine two indicators: [OII]/H β and [NII]/H α (Maiolino+2008)
 - \rightarrow Empirical metallicity indicator : [OII]/(H α +[NII])
 - $[OII]/(H\alpha+[NII]) = 0.72 +/- 0.15$
 - \rightarrow Z > \sim 0.15 Z_{sun}
 - → First constraint on lower-limit of metallicity for LAEs
- Typical LAEs are not so metal-poor
- → do not support the hypothesis that LAEs are extremely metal-poor galaxies (e.g., Schaerer 2003)

4. Discussion

Mass-Metallicity Relation

- M-Z relation is known to evolve with redshift
 - Our result have an offset from the M-Z relation at z~2 (Erb+2006)

Solid lines: Maiolino+2008

Magenta : Erb+2006,2010

Cyan ▲: Finkelstein+2010

Red : our result (stacked LAE)

4. Discussion

Fundamental Metallicity Relation

- ☐ SFR can be a key parameter to describe the M-Z relation
- → FMR (Mannucci+2010, Richard+2010)
 - High SFR → low metallicity
 - Our result is placed near a smooth extrapolation of the FMR
 - → The offset seen in the M-Z R. may be due to small SFRs of LAEs

Solid lines: Mannucci+2010

Black dots: Mannucci+2010

Red : our result (stacked LAE)

Mannucci+2010

5. Summary

Summary and future works

- We carry out Suprime-Cam/NB387 imaging survey to find LAEs at z=2.2
 - 919 LAE candidates are selected in the SXDS field
- Stacking of 105 objects yields the first detections of
 [OII] and Hα from typical LAEs (NB387 < 25.6AB)
 - EW_{rest} (OII) = 98 (+22/-19) A, EW_{rest} (H α) = 207 (+206/-90) A
 - SFR = 6 M_{sun}/yr : much smaller than that of LBGs
 - $f_{esc}(Ly\alpha) \sim 35 \%$: larger than those of other populations
 - $Z > \sim 0.15 Z_{sun}$: larger than that inferred from the M-Z relation
 - → our result supports the FMR in the lower M* side
- Keck/NIRSPEC follow-up observation will bring more information of LAEs in detail!!