The Subaru Ly-alpha blob survey:
A sample of 100 kpc Ly-alpha blobs at z =3
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ABSTRUCT: We present results of a survey for giant Ly- Table 2. Properties of the 14 glant LAB candidstes
alpha nebulae (LABs) at z=3 with Subaru/Suprime-Cam. We m "
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survey triples the number of known LABs over 100 kpc. The
giant LAB sample shows a possible "morphology-density
relation”: filamentary LABs reside in average density
environments as derived from compact Ly-alpha emitters,
while circular LABs reside in both average density and over-
dense environments. Although it is hard to examine the
formation mechanisms of LABs only from the Ly-alpha
morphologies, more filamentary LABs may relate to cold gas
accretion from the surrounding inter-galactic medium (IGM)
and more circular LABs may relate to large-scale gas
outflows, which are driven by intense starbursts and/or by
AGN activities. Our survey highlights the potential
usefulness of giant LABs to investigate the interactions
between galaxies and the surrounding IGM from the field to
overdense environments at high-redshift. 0.4 .
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Table 1. Summary of narrow-band observations — 1 O
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26.3 Figure 1. - Filamentarity of the 14 giant LABs as a function of the overdensity of LAEs.
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The blue squares and red circles indicate giant LABs without QSO and with QSO,
respectively. The error bars show 10 uncertainties. The filamentarity of the LABs
shows a weak anti-correlation with the overdensity of LAEs. The definition of the
filamentarity is

F =1 — ((isophotal area)/(r x (a/2)?))

where a is the major-axis diameter of the LABs. For example, a circle has F = 0 and an
extremely thin filament has F = 1.
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Figure 2. - Pseudo-colour images (B for blue, N B497 for green, V for red) of the 14 giant LABs. The size of the images is 40 x 40 arcsec? (300 x 300 kpc? ). The yellow contours

indicate isophotal apertures with a threshold of 1.4 x 10-'® erg s-' cm arcsec2. The white horizontal bar in the lower right image represents the angular scale of 100 kpc (physical
scale)atz =3.1.
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Figure 3. - Sky distribution of the 14 giant LABs and smoothed density maps of ~ 2000 compact LAEs at z ~ 3.09. In the left panel (a), the small black box indicates SSA22a field by
Steidel et al. (2000, S00) and the dashed box indicates SSA22-Sb1 by Matsuda et al. (2004, M04). The thick bars show the angular scale of 20 comoving Mpc at z = 3.1. The blue
squares and red circles indicate the giant LABs without QSO and with QSO, respectively. The contours represent LAE overdensity, 5=0, 1, 2, 3, 4, 5, and 6.



