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Introduction
• One of the key issues in planetary science is to understand 

“how planets form in disks”.
– Core accretion model can successful explain giant planets at 

several AU (e.g., Pollack et al. 1996)
– Recent direct detections of giant                               

planets with ~10 MJ at beyond                                                     
the planet forming zone  (r >20 AU)                                        
(e.g., Marois et al. 2008)

• Difficulty of inner regions                                     
(r <100AU) of circumstellar disks.
– Typical star forming regions                                    

(e.g., Taurus) : ~100 pc
• Need to access the disk within 1 arcsec.
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Introduction

• Very little is known about inner regions (r <100AU) of 
circumstellar disks.
– Direct imaging at near-infrared has explored beyond r > 100AU.
– Inner regions have not been easily accessible due to speckle 

noise.
• Dual-beam polarimetry allows us to investigate the inner 

regions of the disk.
– Non-polarized speckle noise is automatically suppressed.
– Only polarized light scattered at disks is detected.
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Observations
• Date: Oct. 29th, 2009 at the beginning of SEEDS

– SEEDS: Strategic observation of Subaru Telescope
• Instrument: 8m Subaru/HiCIAO
• Target: AB Aurigae (144 pc)
• Mode: Dual-beam polarimetry
• Wavelength: H band (1.6μm)
• Resolution: 0.06" (9 AU)
• Occulting mask: 0.3" diameter
• Exposure time: 189.6 seconds
• PSF reference star: HD282411
• Accuracy: 

degree of polarizationδP < ~0.3%,              
polarization angle δθ< ~5°

HiCIAO at Subaru Telescope



AB Aurigae
• Well studied Herbig Ae star

– distance 144 pc, age 3-5Myr, mass 2.4Mo                               
(van der Ancker et al. 1997; deWarf et al. 2003)

• Rotating CO disk (r ~450AU) with mass of ~20MJ
(Henning et al. 1998).

• Large nebula with r >1000 AU (Grady et al. 1999)
• Spiral structures in the outer part (r >130 AU) of the disk 

(Fukagawa et al. 2004)
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Recent direct imaging of AB Aur

• Revealed inner disk structures (r <130 AU) by polarimetry
– The disk at r <40 AU has not been accessible.

• Planet candidate with 5 < M < 37 MJ was found in a gap 
region at r ~100 AU (Oppenheimer et al. 2008)

• No point source was found in a gap (Perrin et al. 2009)
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Results of the outer structure

• Spiral arms (S1-8) are detected in Polarized Intensity (PI) image.
– The morphology of the outer part in those images are consistent.

• Structures near the midplane of the disk
– These images of scattering light trace surface of the disk due to optically thick. 
– Sub-millimeter observations reveal the some of spiral arms (Lin et al. 2006)
– Our PI image also reflects the structures of the midplane of the disk
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Results of the inner structure (1)

• The inner working distance (r ~20 AU) with the high 
resolution (9 AU)

• Double ring (dashed lines) and ring-like gap (solid line) 
– Ellipse shape due to the inclination
– The inner ring (i ~43°) might be warped relative to the outer 

ring (i ~27°).

H band

Near side

Far side

Inclination
inner ring: 
43.1̊±6.8°

outer ring:
26.8°±1.9°



Results of the inner structure (1)

• The inner working distance (r ~20 AU) with the high 
resolution (9 AU)

• Double ring (dashed lines) and ring-like gap (solid line) 
– Ellipse shape due to the inclination
– The inner ring (i ~43°) might be warped relative to the outer 

ring (i ~27°).

H band

Near side

Far side

Inclination
inner ring: 
43.1̊±6.8°

outer ring:
26.8°±1.9°



Results of the inner structure (1)

• The inner working distance (r ~20 AU) with the high 
resolution (9 AU)

• Double ring (dashed lines) and ring-like gap (solid line) 
– Ellipse shape due to the inclination
– The inner ring (i ~43°) might be warped relative to the outer 

ring (i ~27°).

H band

Near side

Far side

Inclination
inner ring: 
43.1̊±6.8°

outer ring:
26.8°±1.9°



• Seven dips (Dip A to G) and three PI peak (P1 to 3)
– Newly found except Dip A
– No point-like source in Dip A, which is consistent with 

HST/NICMOS polarimetry (Perrin et al. 2009).
– The upper limit of companion masses at 5σof the photon noise 

in Dip A are 5 and 6 MJ for an age of 3 and 5 Myr, respectively 
(COND model; Baraffe et al. 2003).

– Dip A is confirmed in the total intensity image (~3σ).

Results of the inner structure (2)
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The origin of fine structures of the disk
• Gravitational Instavility

– Toomre Q parameter of ~10 (Lin et al. 2006) is not favored

• Disk-planet interactions
– Planet in the disk excites the spiral density wave            

(e.g., Papaloizou et al. 2007)
• High-mass planet can open the gap.
• Resemble structures with our ring gap.

– Observed warp in the inner ring can be explained by 
gravitational perturbation from unseen planets          
(Mouillet et al. 1997)

• Fine structures of disk including a double ring, a warp, 
and a ring gap are most likely due to planetary 
perturbation.

Simulation with
the FARGO code
(Masset 2000)
by T. Muto.
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How to confirm ?

• The pattern caused by a planet co-rotates with a planet.

– M is a mass of central star, rp is an orbital radius of a planet 

• We can observe this variability in the next seveal years



Summary
• We have conducted the dual-beam polarimetry of the 

prototype young star AB Aur. 
– Both the inner working distance (r ~ 20 AU) and the 

resolution (9 AU) are better than previously achieved.
– A double ring, a ring gap, and a warp structures discovered in 

the disk.
– These fine structures of the disk suggest giant-planet 

formation in the disk.

• We demonstrate that we are able to investigate the 
planet forming regions of wide-orbit planets (r >20 AU)

Future Work
• Revealing fine structures of more disks at r > 20 AU. 
• Understanding the formation mechanisms of the wide-orbit planets 
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