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NIR Spectroscopy of Star-Forming
Galaxies at z~1.4 with Subaru/FMOS

Kiyoto Yabe (Kyoto Univ.)
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Introduction:

* Gas-phase Metallicity (hereafter, metallicity)
v Metallicity traces the past star formation activity
¥ It also changes via gas infall/outflow of the galaxies
v This will be a key to understand the galaxy evolution
* It is known that galaxy mass (or luminosity) is correlated with metallicity
v Massive (bright) galaxies tend to show larger metallicities
v Stellar mass-metallicity (hereafter, MZ) relation at z~0 is established (Tremonti+04)
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Introduction: Mass-Metallicity Relation at z>|

* MZ relation at z~2 (e.g., Erb+06) and z~3(e.g.,Maiolino+08)
v’ Evolution of the MZ relation from z~3 to z~0?
¥ Still controversy as to the MZR at z~2 (Hayashi+09, Yoshikawa+ | 0, Onodera+10)
v’ We need larger sample at z=1-2, when the universe in the most active/violent phase
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Introduction: Intrinsic Scatter of Mass-Metallicity Relation

* The MZ relation at z~0.I has intrinsic scatters (Tremonti+04)
* What physical parameters can explain this scatter?
v' SFR (Mannucci+2010), specific SFR (Ellison+2008),
half light radius (Ellison+2008), galaxy interaction (Rupke+2008)
* The intrinsic scatter of the MZ relation at high-z is still unknown

* We need large sample at high-z
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Introduction: FMOS on Subaru Telescope

* What’s FMOS (Fibre Multi-Object Spectrograph)?

v Second generation instrument for Subaru Telescope

v Collaboration among Japan, UK, and Australia

v Multi-object spectrograph in NIR (0.9-1.8um) w/ 400 fibers and FoV of 30’®
v Low Resolution (LR; R~650) and High Resolution (HR; R~3000) mode

¥ Details are in Kimura et al. 2010, PAS), 62, | 135

v We conduct large NIR spectroscopic surveys with FMOS

FMOS on the Subaru Telescope
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Sample Selection and Observations:

* Targeted Sample
v Field : SXDS/UDS (effective area~0.7 deg?)
V 1.2<2h0c< 1.6, K<23.9 AB mag, M+>10%5 Meun, F(HX)2®>1.0x10-'6 cgs
v Excluding X-ray sources (Ly>10% erg/s)
v' 2500 objects in whole area of the SXDS

e Observations
v' Mainly FMOS/GTOs in 2010-201 |
v' LR mode / Cross Beam Switch mode
¥’ Typical exposure time is 3-4 hrs per FoV

v About 1200 objects are observed in total Targeted Objects

e Data Reduction
v' FMOS reduction pipeline FIBRE-pac
V' Details are shown in Iwamuro+12

* Spectral Fittings
v Fitting methods taking the OH mask
effects into consideration.
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Observed Spectra:

SXDSS5_9364
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AGN Contributions:

e AGN diagnostics from the BPT diagram ([NII]/Hx vs. [OIlI]/HP)

* Most objects are placed in the SF region in the BPT diagram

* 21 objects are AGN candidates (BPT, extremely large [NII]/Hx ratio and line width)
e Stacking analysis shows that our sample is on the SF region on average
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Cosmic Evolution of Mass-Metallicity Relation:

e Comparison to the previous works up to z~3
v Our results at z~1.4 are between those at z~0.8 and z~2.2
v Anti-downsizing-like evolution from z~1.4 to z~0.8?
* Evolution of the MZ relation from z~3 to z~0
v' Smoothly evolves from z~3 to z~0
v’ MZ relation evolution at M*=10'"Mg,nz © 12+log(O/H)=8.69-0.086(1+z)'?

LRI |

- —&— Tremonti+04 Mannucci+09
| - — —  Zahid+11

I T T T T I T T T T I
| Chemical Evolution at 10'°Mqy,

solar abundance

12+1log(0/H)

12+log(O/H)=8.69-0.086(1 +z)'3
A BN RS .
3 2
142z

12+log(0/H)

12+1og(0/H)

Metallicity calibration and IMF of other
works are all the same as ours

red circle: This work@z~1.4

r gl 1 1 A | 1 1 1  —— L1 -
1010 101! 6 8 10 12
Stellar Mass (M) Cosmic Age (Gyr)




Comparison with the theoretical models:

e Comparison with theoretical predictions (Davé et al. 201 I)
v N-body + SPH cosmological simulations
v 4 wind models (no wind; constant wind; slow wind; mass dependent wind) implemented
* Constant wind (cw) : dMwind/dt=2xSFR, vwing=680 km/s

X Mass dependent wind (vzw) : velocity dispersion (=mass) dependent wind
* Our result agrees with €w or vzw model
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Intrinsic Scatter of Mass-Metallicity Relation:

* We found that the MZ relation at z~1.4 has intrinsic scatters of ~0.| dex
v Observational errors are subtracted from the observed scatters
v Well agrees with SDSS results at z~0.1 within the error bars
v' However, note that the values should be lower limit because some metallicities
are upper limit
* What makes the intrinsic scatter?
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Second Parameter Dependency (Yabe+|2):

12+1log(0/H)

* Dependency of SFR and size on the MZ relation

v SFR :derived from H& luminosity corrected for the dust extinction
v We take half light radius (Rso) as galaxy size (from K-band image)
v Dividing the sample into three groups by the parameter

v Stacking analysis in each group

v’ Galaxies with larger SFRs and size tend to show lower metallicities
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Second Parameter Dependency (this work):

* Dependency of SFR and size on the MZ relation
Vv Methods are all the same as before

v The dependency of SFR on the MZ relation disappears in the least massive bin
v The dependency of Rsp still survives
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Morphological trends (very preliminary):

* About 50 objects in the CANDELS/UDS field are observed with FMOS
* For these objects, morphological properties can be examined as well as metallicities

* Diffuse and disk dominated galaxies
tend to show lower metallicity than
compact and bulge dominated galaxies!?

* This result and the size dependency
may support the “Different Evolutionary
Stage” scenario:
Vv’ Galaxies with smaller size have
higher gas surface density
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Summary:

* We observed star-forming galaxies at z~1.4 are measured with Subaru/FMOS
* We detected HX line from ~300 objects with significance of S/N>3
* Gas-phase metallicity is derived from [NII]J/H& line ratio
* We construct the mass-metallicity (MZ) relation at z~1.4 with the largest sample ever
* By comparing previous results:
v The MZ relation evolves smoothly from z~3 to z~0
v They agree with theoretical models with wind
* The MZ relation at z~1.4 has an intrinsic scatter of ~0.1 dex
* We examined the dependency of physical parameters on the MZ relation for the scatter

J Clear trend for size: GaIaX|es with Iarger Rso tend to show lower metaII|C|ty




