Unveiling the nature of the system of the TeV γ -ray binary LSI +61 303 with HDS observation

Y. Moritani (Hiroshima-Univ.), A. T. Okazaki (Hokkai Gakuen Univ.), S. Nagataki (Kyoto Univ.) and A. C. Carciofi (São Paulo Univ.) [moritani@hiroshima-u.ac.jp]

1. Y-ray Binary and Two Competing Model

y-ray Binaries

- * emitting γ-rays, 7 sources discovered so far
- * massive star (> 10 M_{sun}) + compact star
- * TeV γ-ray emission from 5 γ-ray binaries ... varies with orbital period

Two Competing Model

1) Pulsar Wind Model

Colliding wind region b/w a relativistic pulsar wind and a stellar wind (and/or a Be disk)

- ~> Acceleration of electrons
- ~> Inverse Compton (IC) ~> y-rays
- 2) Accretion Model

High accretion rate

- ~> Relativistic jet
- ~> Leptonic model:

İC by relativistic electrons ~> γ-rays Hadronic model:

pp interactions ~> neutral pions ~> γ-rays

Only one source has been established to have a pulsar with a relativistic wind (PSR B1259-63)

which model is consistent with the rest of sources?

2. Distinguishing b/w two models

Previous approach

(both theoretical and observational)

... focusing mainly on compact star

(region emitting high-energy y-rays)

Our strategy

* focusing on the interaction b/w compact star and a massive star (Be star)

- * SPH simulation based on two models
 - ~> Different structure b/w two models

~> Expected line profile variabilities are hence

3. Target

LS I +61° 303

* B0.5Ve + compact star (unknown) wide, eccentric orbit

* P_{orb} = 26.5 days

(Aragona, C. et al. 2009, ApJ, 698, 514)

* e = 0.537 (Aragona, C. et al. 2009, ApJ, 698, 514)

* No consensus conclusion on the nature of the compact object

4. Observation

Subaru/HDS

- * 2011.09.29
- * thanks to the serves program
- * wavelength range 400 700 nm
- * spectral resolution 100,000 @Ha
- * exposure 3600 sec (1200 sec x 3)

Results

* Asymmetric emission line profile with the red peak stronger

- * Small hump in the center?
- * Unfortunately, the orbital phase which we thought was periastron turns out to be ~ 0.3
- ~> Expected Be disk structure is hardly distinguishable Line profile variabilities already terminated

Monitor around periastron is necessity

6. Future Strategy

Observational Approach

- *Monitor around periastron
- *Constrain physical parameters of the Be star
 - + inclination <~ spectro-polarimetry
 - + optical depth <~ NIR spectroscopy

Theoretical Approach

- *Improve SPH simulation
 - + using more plausible physical parameter obtained by above observations
 - + compute line profiles using 3-D radiation transfer code HDUST (Carciofi & Bjorkman 2006, ApJ, 639, 1081)