

Rob Ivison ESO Director for Science

European Southern Observatory

Mission

- ♦ Develop + operate world-class observing facilities for astronomical research
- ♦ Organise collaborations in astronomy

1962

- ♦ ESO created by five Member States
 - ♦ Belgium, France, Germany, Sweden, The Netherlands
- ♦ Goal: build a large telescope in southern hemisphere
 - ♦ This became the 3.6-m telescope on La Silla (1976)

2016

- ♦ 15+1 Member States (~30% of world's astronomers)
- ♦ VLT on Paranal is world-class ground-based system
- ♦ ALMA (in partnership) on Chajnantor heading towards full operations
- ♦ Construction of 39-m E-ELT on Armazones has started

La Silla

Paranal

Survey telescopes

Existing VISTA Public Surveys – began 2010 April

Existing VISTA Public Surveys – began 2010 April

Survey	Science topic	Area (deg²)	Filters	Magnitude limits	Observing time completed (hrs) to April 1st 2016
Ultra-VISTA	Deep high z	1.7 deep 0.73 ultra deep	YJ H Ks NB118	25.7 25.5 25.1 24.5 26.7 26.6 26.1 25.6 26.0	1598
VHS	Full accessible sky	17800	YJHKs	21.2 21.1 20.6 20.0	3730
VIDEO http://www-astro-physics.ox.ac.uk/-video	Moderately deep high z	12	ZYJHKs	25.7 24.6 24.5 24.0 23.5	1483
VVV	Galactic MW	560	ZYJHKs	21.9 21.1 20.2 18.2 18.1	2157/Completed
VIKING http://www.astro- wise.org/projects/VIKING	Extragalactic	1500	ZYJHKs	23.1 22.3 22.1 21.5 21.2	2194/Completed
VMC	Resolved SFH	180	YJKs	21.9 21.4 20.3	1529

New VISTA Public Surveys – to begin 2017 April

Survey name P.I.	Short Title	Filters	Time (hrs)	Area (deg²)
GW; Tanvir	Kilonova counterparts to Gravitational wave sources	YJKs	420	(10)
UltraVISTA; Dunlop	Completing the legacy of UltraVISTA	J H Ks	756	0.75
VVVX; Minniti	Extending VVV to higher Gal lat.	J H Ks	1900	1700
VEILS; Banerji	VISTA Extragalactic Infrared Survey	J Ks	1180	12
CAV; Nonino	Clusters at VIRCAM	Y J Ks	560	72
VISIONS; Alves	VISTA star formation atlas	J H Ks	553	70.5
SHARKS; Oteo	Southern Herschel-Atlas Regions K-band survey	Ks	1200	300

- Second cycle of VISTA surveys; ESO Call in 2015
- 13 Lol submitted by community, oversubscription >2x
- 7 proposals selected by PSP, approved by OPC, then by DG

4MOST

- PI Roelof de Jong AIP
- World-class fibre-fed MOS
 - Cassegrain focus of VISTA
 - large field of view (> 4 deg²)
 - spectral resolutions (LRM: R>5,000, HRM: R>18,000) for both Galactic and extragalactic applications
 - high multiplex (>700 LRM, >700 HRM)
 - 1500 fibres, goal 2200
 - broad coverage in LRM (400-885 nm)
 - > 393-435, 521-571, 610-675 nm in HRM
- PAC 2021

Integrated system

MUSE

GRAVITY

AOF

- Upgrade UT4 with an Adaptive Secondary mirror (1170 actuators) & Four Laser Guide Stars
- GALACSI feeds MUSE
 - Two fields of view: 1 arcmin for Ground Layer AO
 - gain of 2 in ensquared energy at 750nm
 - > 7.5" FOV for Laser Tomography AO
 - moderate Strehl ratio in the visible (>5% @ 650 nm) on-axis
- GRAAL feeds HAWK-I
 - GLAO: x2 in ensquared energy at K over the 7.5 arcmin FoV
- PAC 2017-8

ESPRESSO - Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations

CRIRES+

MATISSE - Multi-Aperture mid-Infrared SpectroScopic Experiment

ERIS

- PI Ric Davies MPE
- SPIFFI Integral field spectroscopy
 - > FoV 0.8", 3.2", 8"
 - R~3000 & 8000; J-K bands
- NIX
 - J-K narrow/broad bands;
 - > 13/27 mas pix (26"/55" FoV)
 - ➤ L-M broadbands; 27mas pix (55" FoV)
- High-contrast imaging
 - Pupil plane coronagraph (L-M)
 - Focal plan coronagraph (L-M)*
 - Sparse aperture Masking (J-M)
- long slit spectroscopy*
 - > R=500, LM band simultaneously
- PAC 2021

MOONS - Multi-Object Optical and Near-infrared Spectrograph

PI Michele Cirasuolo

- > Field of view: 500 sq. arcmin at 8.2m VLT
- ➤ 1024 fibers with possibility to deploy them in pairs
- Medium resolution:
 - Simultaneously 0.64μm-1.8μm
 - R=4000–6000
- High resolution:
 - Simultaneously 3 bands:
 - $0.76-0.90\mu m$ at R = 9,000
 - 0.95-1.35µm at R=4,000
 - 1.52-1.63µm at R=20,0

PAC 2020

APEX

Cherenkov Telescope Array (CTA)

- Array of simple but fairly large optical telescopes
 - Measure Cherenkov flashes in Earth's atmosphere from interaction with very high energy photons from objects in the Universe, with ~0.1 degree angular accuracy
 - Follow-up to HESS, MAGIC, VERITAS experiments
 - Approximately 1000 objects expected, many Galactic
 - Transition from experiment to observatory

E-ELT

E-ELT Optomechanics

Planets & Stars E-ELT Science Stars & Galaxies JWST Gullieuszik et al 2014.

E-ELT

Recent contract awards

- ♦ M4 shell and unit
- ♦ MAORY, MICADO, HARMONI, METIS
- ♦ Dome and main structure

Instrumentation roadmap

- ♦ Phase A studies: MOS & HIRES
- ♦ ELT-6: Specs to be defined later
- → EPICS: After further technology development

Construction philosophy

- ♦ 'VLT model' of consortia working closely with ESO
- ♦ GTO policy: Cou-1543
 Max 15% of E-ELT observing time for GTO to consortia
 65 nights per instrument, spread over 4-8 years

E-ELT synergies

ESO Long-Term Strategy

- 15 MS, with income as currently foreseen
 - Programme as summarized, but only Phase 1 E-ELT
 - Includes CTA on cost reimbursement basis
 - Major ALMA upgrade only possible after E-ELT Phase 2
- If extra income available, e.g., from new MS
 - Highest priority is Phase 2 E-ELT
 - Brazil's membership would enable this in full
 - Discussions with other candidate Member States ongoing
 - New opportunities being analysed
 - Participation in Large Single Dish (40m at Chajnantor)
 - Participation in wide-field MOS telescope (12-15m)
 - Third-generation VLTI, incl. two more (fixed) ATs

ESO Financial aspects

- Boundary conditions on overall programme
 - Paranal operations and instrumentation protected
 - ALMA contribution at current level (incl. development)
 - La Silla continues to 2030, APEX extended through 2022
- E-ELT construction is divided into two Phases
 - Phase 1 affordable without Brazil as MS (1033 MEUR)
 - 39m E-ELT but not all instruments and capabilities at first light
 - Phase 2 (110 MEUR) will complete baseline E-ELT
 - Includes more M1 segments, LTAO unit, ...
 - Council authorised
 - Spending on Phase 1 (Dec 2014)
 - Placing all Phase 1 contracts in line with first light in 2024
 - Even when managing cash flow requires a loan (Jun 2016)

