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The Kuiper Belt

Figure 1: The Kuiper Belt. Points are known objects, colour coded by 
dynamical class. The white triangle marks the current position of the New 
Horizons Spacecraft. Program targets are scattered (blue) and cold 
classical (red) objects.
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Figure 2: The New Horizons 
spacecraft, equipped with the 
Long Range Reconnaissance 
Imager (LORRI). The location 
of the spacecraft within the 
Kuiper Belt enables direct 
imaging of nearby objects at 
phase angles impossible 
from the Earth (see Figure 3). 
Depending on the proximity 
to the target, some LORRI 
observations have resolutions 
that surpass that of the 
Hubble Space Telescope. 

on a given night (Tables 3, 5, 7, and 9) and otherwise make no
corrections for light-curve or rotational variation in reflectance.
For DKBOs with many observations obtained at a regular
cadence during a night and rotation periods less than 8 hr,
averaging all nightly observations may approximate the light-
curve-corrected reflectance at a given phase angle. Clearly,
HJ103 has a high-amplitude light curve that must be removed to
characterize the opposition effect for this CCKBO, but
insufficient sampling of Earth-based observations (Table 7)
precludes construction of HJ103ʼs light curve at low phase
angles. Because we use data from multiple filters and
photometric systems, color corrections must transform all
observations to a single wavelength, here the V-magnitude
(VEGAMAG) system (Tables 1–12). For the DKBOs with
available light curves from New Horizons LORRI, i.e., Arawn,
HE85, HK103, and JY31, we adopt the light-curve mean as the
reflectance at each phase angle.

Upon construction of the complete solar phase curves, we
normalize all observations to the geometric albedo at opposi-
tion and fit them to the Hapke (2012) photometric model
modified following Helfenstein & Shepard (2011). Since we do
not know the diameters of these DKBO targets, we must
assume that their geometric albedos match those of the average
objects in their dynamical classes reported by Lacerda et al.
(2014; Table 14).

3.1. Hapke Parameters

Eight parameters describe the Hapke (2012) model: single
scattering albedo, surface macroscopic roughness, two para-
meters that describe the single particle phase function (SPPF),
and four parameters that describe the opposition effect, the
dramatic, nonlinear increase in reflectance seen as phase angles
decrease to zero. The Hapke (2012) model also includes a
porosity coefficient, K; however, our approach uses the
Helfenstein & Shepard (2011) version which eliminates the
need for the K parameter. We describe each parameter in detail

below, for more detailed descriptions, see reviews by Verbiscer
& Helfenstein (1998) and Verbiscer et al. (2013).
By definition, the single scattering albedo Xo˜ is the ratio of

particle scattering to extinction efficiencies; it is related to
particle composition, size, and microstructure. The macro-
scopic roughness parameter R̄ is the mean topographic slope
angle of surface relief at resolutions below the pixel scale of the
observations. The opposition effect is the product of two
phenomena: particle shadow hiding and a constructive
interference phenomenon known as coherent backscatter
(Shkuratov 1988; Muinonen 1990). Both the shadow hiding
opposition effect (SHOE) and the coherent backscatter
opposition effect (CBOE) are described by two parameters,
an amplitude Bo and an angular width h expressed in radians.
The angular width of the SHOE hS is related to the porosity and
particle size distribution of surface particles. The amplitude of
the SHOE BoS is related to particle transparency; it is the
fraction of light backscattered directly from the front surface of
a particle relative to the total amount of light backscattered by
the particle. For a perfectly opaque particle, BoS=1. The
angular width hC and amplitude BoC of the CBOE depend on
the density and size of small scatterers and the mean optical
path length of a photon (medium transparency). Both BoS and
BoC have upper limits of unity.
We use a two-parameter Henyey & Greenstein (1941) SPPF

which is a linear combination of two single-parameter Henyey–
Greenstein functions (McGuire & Hapke 1995):
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The b parameter describes the (assumed to be equal) angular
width of the backward and forward scattering lobes of the
particle phase function and the c parameter describes the
relative amplitude of each lobe. The two parameters character-
ize the mechanical structure of surface grains: surfaces with

Figure 5. Complete solar phase curves of all six distant KBOs in this study plotted separately (A) and together (B) to facilitate direct comparison of their shapes. All
phase curves are normalized to 0 mag at opposition (α=0°) and shown on the same scale. Arawn’s phase curve includes two observations at α=131°, which were
not included in the Porter et al. (2016) study. Solid lines are fits to the Hapke (2012) photometric model described for each DKBO by the parameters in Table 13;
however, the solid lines in (B) for HJ103, HE85, and HZ84 are limited to phase angles no larger than 30°, 80°, and 80°, respectively, because there are no observations
of these DKBOs at higher phase angles. Limiting the range of phase angles for these DKBOs enables comparisons between the shapes of Arawn, HK103, and JY31
which do have observations at higher phase angles. Only some of the New Horizons LORRI observations have been corrected for variation in reflectance with rotation
(i.e., light curve). (See the text for details.)
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Figure 3: Phase curves of 
Kuiper Belt Objects observed 
by LORRI (Verbiscer et al. 
2019). Phase curves provide 
detail on microscopic (pores, 
dust) and macroscopic 
(craters, mountains) surface 
properties. New Horizons-
LORRI provides coverage for 
phase angles >2o which is 
unachievable from Earth-
based observatories. 

Project Goals
•Use ground-based deep observations to discover new 
Kuiper Belt Objects bright enough for observation with 
the LORRI telescope (rEarth~26, VLORRI~21).


•To characterize the phase curves and high-phase light 
curves of discovered targets


•To search for any potential new flyby targets
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Convolutional Neural Networks

Figure 4: Convolutional filter example. The 3x3 filter (the 
kernel) is an example of a vertical edge detector, which 
when convolved with the left image, highlights the 
location of the sharp edge in that image (see Figure 5)1. 

Figure 5: Example of an edge filter applied to the original image of the Canada-
France-Hawaii and Gemini-North Telescopes.

The main component of a neuron in a convolutional network is the filter. Filters, or convolution kernels, have 
parameters that are learned through training so as to pickout features of the input images that help lead to 
accurate classification, eg., a cat or dog, a galaxy or Kuiper Belt Object. 

Original Image Sobel Edge Filter

In our adopted network architecture, each convolutional layer consists of a layer of neurons (each with its own 
learned filter), followed by a pooling layer which bins the convolved images by replacing each 2x2 region with that 
region’s maximum value. After 3 convolutional layers, a flattened version of the image outputs is fed to a pair of 
fully connected layers where the probabilities of positive and negative source classification are determined.

Figure 6: Diagram of our convolutional neural network structure. Structures like shown here are 
typically quite successful in simple binary classification2.

Network Details: 

•filters of size (1, 3, 3)

•3 convolutional layers: 16, 16, 
and 8 neurons

•max pooling

•zero padding

• input data are the shift’n’stack 
images (see panel below)

Image and Training Data
Observations were acquired at 16 epochs from May to 
Aug. 2020 with Hyper Suprime-Cam on the Subaru 
telescope. A sequence of ~100 90s images was 
acquired at each epoch.

Figure 7: Example discovery image cutouts. Can you spot the moving object?

Image calibration, preprocessing, and image 
subtraction was performed with the LSST pipeline. 
Artificial source injection was performed with TRIPPy 
(Fraser et al. 2016). Images were shifted and stacked 
at rates of motion consistent with Kuiper Belt Object 
motions and provide input for the search network.

Figure 8: Four separate shift stacks of the source shown in Figure 7.

The Search Results
The network provides a >3 order of magnitude 
reduction in false positives and the discovery of  more 
than 100 new objects. Visual vetting of ~3,000 sources 
per epoch was still required. The detection efficiency is 
excellent considering that the discovery imagery is 
near the galactic plane (see background image).
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Figure 9: The detection 
efficiency of one example 
June 2020 observation run. 
For reference, the 
approximate detection limit in 
blank sky is r~27.

Figure 10: An example of a 
newly discovered real object. 
The grid shows interleaved 
stacks (left to right) for three 
angles of motion (top to 
bottom).
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