

FastSound: A Near-Infrared Galaxy Redshift Survey for Cosmology at z~1.3 using Subaru/FMOS

TOTANI, Tomonori (戸谷友則) (Dept. Astron., Univ. of Tokyo)

2016 Jan. 19 Subaru User's Meeting, Atami, Shizuoka

Scientific Background: RSD as a Probe of Cosmic Acceleration

The origin of the acceleration of the cosmic expansion?

- dark energy?
- breakdown of general relativity on cosmological scales?

 Measurement of large-scale structure growth rate gives constraints on the theory of gravity

 redshift space distortion (RSD) observed in galaxy redshift surveys gives such a test

Redshift Space Distortion (RSD)

 observed P(k) or ξ (r) is distorted by line-of-sight peculiar velocity of galaxies

Hamilton '98

RSD in P(k) or ξ (x)

2D contour of galaxy correlation func. ξ (r)

- In the linear regime:
 - the Kaiser effect

 $P^{s}(\boldsymbol{k}) = (1 + \beta \mu_{\boldsymbol{k}}^{2})^{2} P(k)$

- β: the anisotropy parameter
- $\mu = \cos \theta$ (θ : angle to line-of-sight)
- scale independent
- In the non-linear regime:
 - Fingers of God

tangential

Guzzo+'08

- RSD gives a measure of structure growth rate • anisotropy parameter β = infall velocity of large scale structure • related to the speed of density fluctuation growth
 - simply by mass conservation, independent of gravity theory

$$f \equiv \frac{H_0 a_0}{H a} \frac{d \ln D}{d \tau} = \frac{d \ln D}{d \ln a} \; .$$

structure growth rate, $D(t) \propto \delta(t)$

- $\beta = f/b$ within the linear theory
- $\beta \rightarrow f/b$ or $f(z) \sigma_8(z) \rightarrow test$ of gravity on cosmological scale!

RSD testing Gravity Theory

- more precise measurements at z < 1
- go beyond z = 1: FastSound!

Subaru/FMOS

- Fiber Multi-Object Spectrograph in NIR for Subaru
 constructed by Japan-UK collaboration
- 400 fibres in circular FOV (30' Φ)
 hexagonal arrangement with 1.4' separation
 fiber aperture 1.25" φ
- ♀ wavelength coverage: 0.9um 1.8um
- **9** Spectral resolution
 - \bigcirc Low resolution mode: R=500
 - \bigcirc High resolution mode: R=2200
- \bigcirc Limiting magnitude (1 hr, S/N=5)
 - ♀ J ~ 22.0
 - ♀ H ~ 20.0
 - \bigcirc Line ~ 1 x 10⁻¹⁶ erg/s/cm²
 - **9** OH airglow suppression system

FMOS highlights

- multi-fiber NIR spectroscopy using Subaru prime-focus
 - ♀ 400 fibers in 30' diameter field of view
 - ♀ large photon collecting power by 8m Subaru
 - $\$ efficient fiber allocation by the Echidna system
 - \bigcirc two spectrographs (IRS1, 2) cover 200 fibers

Echidna

♀ OH airglow suppression system using mask mirror

mask mirror

FastSound

- The name comes from...
 - ・FMOS 暗黒世界探査 (Ankoku Sekai Tansa = Dark World Survey)
 - Subaru Observation Understanding Nature of Dark energy
- The team ~40 members from Japan, UK + Int'l:

PI & Co-PI

- Tomonori Totani (Pl, Kyoto University)
- Naruhisa Takato (Co-Pl, NAOJ/Subaru)

Japan:

- Masayuki Akiyama (Tohoku)
- Tomotsugu Goto (IfA, Univ. Hawaii)
- Chiaki Hikage (Princeton)
- Masatoshi Imanishi (NAOJ/Subaru)
- Takashi Ishikawa (Kyoto)
- Yoichi Itoh (Hyogo)
- Fumihide Iwamuro (kyoto)
- Tsutomu Kobayashi (Tokyo)
- Toshinori Maihara (Kyoto)
- Takahiko Matsubara (Nagoya)
- Takahiro Nishimichi (Tokyo)
- Kouji Ohta (Kyoto)
- Hiroyuki Okada (Kyoto)
- Teppei Okumura (IEU, Ewha Womans Univ., Korea)
- Shinki Oyabu (Nagoya)
- Shun Saito (JSPS, UC Berkeley)
- Masanao Sumiyoshi (Kyoto)
- Ryuichi Takahashi (Hirosaki)
- Naoyuki Tamura (Tokyo)
- Atsushi Taruya (Tokyo)
- Motonari Tonegawa (Kyoto)
- Shinji Tsujikawa (Tokyo Sci. Univ.)
- Kiyoto Yabe (NAOJ)
- Naoki Yoshida (Tokyo)

UK:

- Andrew Bunker (Oxford Univ.)
- Gavin Dalton (Oxford Univ.)
- · Pedro Ferreira (Oxford Univ.)
- · Carlos Frenk (Durham Univ.)
- Edward Macaulay (Oxford Univ.)
- Will Percival (Univ. Portsmouth)
- Tom Shanks (Durham Univ.)

International Members:

- Stephane Arnouts (CFHT)
- Chris Blake (Swinburne)
- Jean Coupon (Taiwan)
- Richard Ellis(Caltech)
- Karl Glazebrook (Swinburne)
- Henry McCracken (Terapix)
- Lee Spitler (Swinburne)
- Istvan Szapudi (IfA, Havraii)

FastSound: Quick Summary

 Cosmology-purpose redshift survey by FMOS (near-IR fiber-fed spectrograph) of Subaru Telescope, approved as the second "Subaru Strategic Program"

20 deg², ~4000 galaxy redshifts in 4 CFHTLS Wide fields

- targeting H α emitting galaxies at z~1.2-1.5 (=wavelength coverage)
- target selection: photo-z & H α flux est. by five optical (ugriz) bands
- 30 min. on-source exposures for each field-of-view (0.2 deg²)
- ~10% detection efficiency for 400 FMOS fibers
- ~40 nights for 2 years from Mar. 2012 Jul. 2014

FastSound: Quick Summary (contd.)

- primary science goal: test of gravity theory about structure growth rate, by measuring redshift space distortion (RSD)
 - measurement of $f\sigma_8$ at z~1.35 (~25% stat. error)
 - the first significant detection of RSD at z > 1
- Other various science topics, e.g.
 - H α luminosity function and cosmic SFR at z ~ 1.3
 - metallicity study for star forming galaxies at z ~ 1.3
 - environmental dependence of star-forming galaxies at z~1.3

Project Status

- All observations finished (July 2014).
- The emission line catalog already open to public on the webpage
 - including ~4,000 galaxies (S/N >~ 4)
 - by far the largest spectroscopic sample in NIR at z > 1
 - >~90% should be H α at z ~ 1.2-1.5
- Main series papers published/submitted to PASJ (all available on arXiv)
 - Paper I (Tonegawa et al.) for survey overview
 - PASJ, 67, 81 (2015)
 - Paper II (Okada et al.) for catalog description and basic properties of emission line galaxies
 - re-submitted to PASJ, arXiv:1504.05592
 - Paper III (Yabe et al.) for metallicity study
 - PASJ, 67, 102 (2015)
 - Paper IV (Okumura et al.) for RSD and cosmology
 - submitted to PASJ, arXiv:1511.08083

FastSound Results Highlights

galaxy distribution map in 4 CHFHTLS-W fields 121 FMOS FoVs, 20.6 deg² in total

Example CFHTLS Images of FastSound Galaxies

Stacked FastSound Spectra

- assuming that the strongest line is always $H\alpha$

Are these mostly $H\alpha$?

multiple-line galaxies are

- $H\alpha$ -NII-SII system
- OIII doublets at z~2 (estimated to be ~4% in all single-line galaxies)
- no significant detection of other line pairs
- Stacked spectrum indicates that OIII doublets are ~5% of all FastSound emission line galaxies
 - consistent result from multiple line statistics

Okada+'15

Table 6.	The result of	the line ider	tification for the	e emission	line pairs	found in the 1,10	05 FastSound galaxies.
	line (shorter)	line (longer)	wavelength ratio	number n	noise [*] n_n	number (corrected) [†]	chance probability [‡]
(1)	$[SII]\lambda 6717$	[SII]λ6731	$1.00214^{\$}$	35	10.9	$24.1^{+7.0}_{-5.9}$	$< 10^{-5}$
(2)	$[NII]\lambda 6548$	$H\alpha$	$1.00225^{\$}$	37	10.9	$26.1^{+7.1}_{-6.1}$	$< 10^{-5}$
(3)	$H\alpha$	$[NII]\lambda 6583$	1.00315	226	10.9	$215.1^{+16.1}_{-15.0}$	$< 10^{-5}$
(4)	[NII]λ6548	$[NII]\lambda 6583$	1.00541	6	10.7	< 3.78	0.95
(5)	$[OIII]\lambda 4959$	$[OIII]\lambda 5007$	1.00966	50	10.3	$39.7^{+8.1}_{-7.0}$	$< 10^{-5}$
(6)	$H\beta$	[OIII]λ4959	1.02007^{\parallel}	6	9.5	< 3.78	0.91
(7)	[NII]λ6583	$[SII]\lambda 6717$	1.02020∥	5	9.5	< 3.78	0.96
(8)	$[NII]\lambda 6583$	[SII]λ6731	1.02238	5	9.3	< 3.78	0.95
(9)	$H\alpha$	[SII]λ6717	1.02341	67	9.2	$57.8^{+9.2}_{-8.2}$	$< 10^{-5}$
(10)	$H\alpha$	[SII]λ6731	$1.02560^{\#}$	26	9.0	$17.0^{+6.2}_{-5.1}$	$< 10^{-5}$
(11)	[NII]λ6548	$[SII]\lambda 6717$	$1.02572^{\#}$	24	9.0	$15.0^{+6.0}_{-4.9}$	0.00002
(12)	$[NII]\lambda 6548$	[SII]λ6731	1.02791	11	8.8	$2.2^{+4.4}_{-2.2}$	0.27
(13)	$H\beta$	$[OIII]\lambda 5007$	1.02993	15	8.6	$6.4^{+5.0}_{-3.8}$	0.031
(14)	[SIII]λ9069	$[SIII]\lambda 9531$	1.05094	12	6.8	$5.2^{+4.6}_{-3.4}$	0.046

* The expected number of spurious pairs originating from noise.

[†] The number corrected for the spurious pair detection rate, i.e., $n - n_n$, with 1σ statistical errors. The upper bound is given at 2σ .

[‡] The probability of finding the observed number of pairs only by noise events under the Poisson statistics.

§,∥,# These pairs are indistinguishable due to the very close values of wavelength ratio.

Some Galaxy Properties

FastSound Paper II (Okada+'15)

The FastSound Real Galaxy 3D Map

>1200 galaxies in 7 deg², z ~ 1.2-1.5

- comoving distance = 4.0 Gpc
- age at this redshift = 4.7 Gyr
- comoving volume = 0.04 Gpc^3

FastSound 3D map in W3 field

3D galaxy maps by various surveys

Scientific Results Highlights

"The Subaru FMOS Galaxy Redshift Survey (FastSound) - The mass-metallicity relation and the fundamental metallicity relation at z~1.4"

Yabe et al. 2015 PASJ in press (arXiv: 1508.01512)

• Stacking analysis dividing sample into stellar mass and SFR bin (5 masses x 5 SFRs). The number of galaxies in each bin is ~160 • Quality of individual spectrum is not so good, and thus, a spectral stacking analysis is applied in this study

Stacked spectra around Hα line (6563Å)

"The Subaru FMOS Galaxy Redshift Survey (FastSound) - The mass-metallicity relation and the fundamental metallicity relation at z~1.4"

Yabe et al. 2015 PASJ in press (arXiv: 1508.01512)

Metallicity is derived from [NII] λ 6584/Ha (N2 method; Pettini & Pagel 04) of the stacked spectra (5 mass x 5 SFR bins) and the mass-metallicity relation (left) and the fundamental metallicity relation (right) at z~1.4 are constructed by using ~4,000 sample (the largest sample in this redshift range ever)

"The Subaru FMOS Galaxy Redshift Survey (FastSound) - The mass-metallicity relation and the fundamental metallicity relation at z~1.4"

8.8

 $12 + \log(0/H)$

metallicity

Yabe et al. 2015 PASJ in press (arXiv: 1508.01512)

• [SII] $\lambda\lambda$ 6717, 6731 detected significantly in the stacked spectra.

 [SII]λ6717/[SII]λ6731 line ratio (top left) a good tracer of electron density) is comparable to that of SDSS galaxies at $z \sim 0.1$ (n_e ~ 10 - 500 cm⁻³) N/O abundance ratio (bottom left) is measured from [NII]λ6584/[SII]λλ6717,6731 (N2S2 index), showing higher value at z~1.4 than local values

RSD & Cosmology

- Paper IV (Okumura+'15)
 - paper submitted on 2015 Nov. 25 --- the 100th anniversary of general relativity!
 - we got a positive referee report on 2015 Dec. 25, i.e., the birthday of ...
- wait for Okumura-san's talk later!

Summary

- FastSound: a galaxy redshift survey in near-infrared, targeting H α emitters at z = 1.2-1.5
 - to deliver RSD measurement at ~4 sigma using ~4000 H α emitters in 20 deg² fields
- Survey observations already finished. The emission line catalog open to public.
- galaxy clustering and RSD clearly detected.
- The main series four papers already on arXiv.
 - Paper I, III already published in PASJ
 - Paper II, IV will appear soon in PASJ